
 

 

 

 

 

 

LLaayyeerriinngg  SSttrraatteeggiieess    

PPeetteerr  EEeelleess    
  
Rational Software White Paper 

 

TP 199, 08/01 



 

 

 

 

 

 
 

 

 

 

Table of Contents 
 

 

 

Abstract.................................................................................................................................................................................... 1 

What is “Layering”? ............................................................................................................................................................... 1 
Modeling Layers ................................................................................................................................................................... 2 

Layering Strategies ................................................................................................................................................................. 3 
Responsibility-based Layering .............................................................................................................................................. 3 
Reuse-based Modeling .......................................................................................................................................................... 8 
Other Layering Strategies.................................................................................................................................................... 10 
Multi-dimensional Layering ................................................................................................................................................ 10 

Conclusion.............................................................................................................................................................................. 12 

Acknowledgements................................................................................................................................................................ 12 

Bibliography .......................................................................................................................................................................... 12 



Layering Strategies 

1 

Abstract 
A number of techniques exist for decomposing software systems. Layering is one example and is described in this paper. Such 
techniques address two main concerns: most systems are too complex to comprehend in their entirety and different 
perspectives of a system are required for different audiences. 

Layering has been adopted in numerous software systems, and is espoused in many texts and also in the Rational Unified 
Process (RUP). However, layering is often misunderstood and incorrectly applied. This paper clarifies what layering means 
and discusses the impact of applying different layering strategies. 

What is “Layering”? 
Let’s start by defining what we mean by “layering.” The term layer refers to the application of an architectural pattern 
generally known as the “Layers” pattern, which is described in a number of texts ([Buschmann], [Herzum], [PloP2]), and 
also in the RUP. A pattern represents a solution to a common problem that exists in a particular context. An overview of the 
Layers pattern is given in Table 1. 

Table 1:  Overview of the “Layers” Pattern 

 Layers Pattern 

Context A system that requires decomposition 

Problem A system that is too complex to comprehend in its entirety 
A system that is difficult to maintain 
A system whose least stable elements are not isolated 
A system whose most reusable elements are difficult to identify 
A system that is to be built by different teams, possibly with different skills 

Solution Structure the system into layers 

 

One of the most familiar examples of layering is the OSI 7-layer model, defined by the International Standardization 
Organization (ISO). This model, shown in Figure 1, defines a set of networking protocols — each layer focuses on a specific 
aspect of communication and builds upon the facilities of the layer below it. The OSI 7-layer model uses a responsibility-
based layering strategy: each layer has a particular responsibility. This strategy is described in detail later in this paper. 

Application

Physical

Session

Transport

Network

Data Link

Presentation

Layer 7

Layer 1

Layer 5

Layer 4

Layer 3

Layer 2

Layer 6

Provides application facilities such as email or FTP

Transmits bits

Manages the connection

Creates packets of data

Routes packets of data

Detects and corrects errors at a low level

Structures information as required

 

Figure 1:  OSI 7-Layer Model (Responsibility-based Layering) 

 

 

 



Layering Strategies 

2 

Figure 2 shows another example of responsibility-based layering.  

• = The Presentation Logic layer contains elements responsible for providing some form of rendering to a 
human being, such as an element in the user interface.  

• = The Business Logic layer contains elements responsible for performing some kind of business processing 
and applying the business rules.  

• = The Data Access Logic layer contains elements responsible for providing access to an information source, 
such as a relational database.  

 

It should be noted that layers can be modeled in a number of ways, as described later in this paper. For now, we will explicitly 
represent a layer using a UML package with the stereotype «layer». 

 

Figure 2:  Responsibility-based Layering 

 

The layers shown in this particular example of responsibility-based layering are often called “tiers” and are a familiar concept 
in distributed systems development where 2-tier, 3-tier, and n-tier systems are found. 

An important aspect of Figure 2 is the direction of dependencies shown, since it implies a certain rule that is a characteristic 
of layered systems — an element in a particular layer may only access elements in the same layer, or in layers below it1. In the 
example given here, elements in the Business Logic layer may not access elements in the Presentation Logic layer. Also, 
elements in the Data Access Logic layer may not access elements in the Business Logic layer. This structure is often referred 
to as a directed acyclic graph (DAG). It is directed in that the dependencies are unidirectional and acyclic in that a path of 
dependencies is never circular. 

On a more specific note, it is important to be precise about the meaning of each layer when defining a layering strategy so that 
elements are correctly placed in the appropriate layer. Failure to correctly assign an element to the appropriate layer will 
diminish the value of applying the strategy in the first place. As each layering strategy is discussed in more detail, some 
general guidance is given on the meaning of each of the layers. 

Modeling Layers 
As we investigate different layering strategies, it will become clear that it is appropriate to communicate each strategy using 
specific models (and therefore specific UML elements). A model represents a complete description of a system from a 
particular perspective. Figure 3 shows an example of four models that represent different perspectives of the system under 
consideration: 

                                                           
1 Although an event notification may result in a message from an element in one layer being sent to an element in an upper layer, no 
explicit dependency in this direction exists. 



Layering Strategies 

3 

• = Use-Case Model: captures the system requirements  

• = Analysis Model: captures the system requirements analysis  

• = Design Model: captures the system design  

• = Implementation Model: captures the system implementation  

 

Use-Case 
Model

Analysis 
Model

Design
Model

Implementation
Model

 

Figure 3:  Four Models Representing Gradual Refinement 

 

Additional models include: 

• = Deployment Model: captures the distribution aspects of a system 

• = Data Model: captures the persistent aspects of a system 

Layering Strategies 
Layering can be based on a number of characteristics. This section discusses layering based on the following characteristics: 

• = responsibility 

• = reuse 

 

The representation of each strategy will be considered as each strategy is discussed in detail. 

Responsibility-based Layering 
Probably the most commonly used layering strategy is one based upon responsibility. This particular strategy can improve the 
development and maintenance of a system since various system responsibilities are isolated from one another. As an example 
(see Figure 2), a system can be layered based upon the following responsibilities: 

• = presentation logic 

• = business logic 

• = data access logic 

 

Each of these responsibilities can be represented as a layer, as shown in Figure 4, which displays some sample content for 
each layer. Here we consider three concepts in an order processing system—Customer, Order, and Product. As an example, 
the Customer concept comprises the following: 

• = CustomerView class: responsible for the presentation logic associated with a customer, such as the 
rendering of a customer in the user interface 

• = Customer class: responsible for the business logic associated with a customer, such as validation of 
customer details 



Layering Strategies 

4 

• = CustomerData class: responsible for the data access logic associated with a customer, such as making the 
state of a customer persistent 

 

Figure 4:  Layers and Content for a Responsibility-based Layering 

 

We’ll now consider some “myths” regarding this particular layering strategy. 

 

Myth 1: Layers and tiers are different 

This particular myth is a commonly encountered source of confusion. The fact is that a tier is a layer, albeit a layer based 
upon a particular strategy—one of responsibility. The confusion is compounded by the fact that the concepts of tiers can be 
applied in numerous ways, as shown in Table 2. 

Table 2:  Tier Definitions 

Application Layers (Tiers) 

2-tier combined presentation logic and business logic 

data access logic 

3-tier presentation logic 

business logic 

data access logic 

n-tier presentation logic 

business logic (distributed) 

data access logic 

 

 



Layering Strategies 

5 

Myth 2: Layer (tiers) imply a physical distribution 

Another common misconception is that the logical layering implies a physical distribution. Consider a 3-tier layering. Even 
though various elements will reside in one of the layers, each layer itself can be applied in a number of ways as shown in 
Table 3, which uses names often used to characterize a particular physical distribution (such as “thin client”). 

Table 3:  Application of 3-Tier Layering 

Layers Application 

Client side Server side 

Single system presentation logic 

business logic 

data access logic 

 

Thin client presentation logic business logic 

data access logic 

Fat client presentation logic 

business logic 

data access logic 

 

It is also true to say that a single system may employ more than one physical distribution strategy, where certain elements 
would be classified as epitomizing a “thin client” distribution and others a “fat client” distribution. Typically, the choice is 
based upon nonfunctional requirements such as performance. 

Modeling responsibility-based layers 

As we will see, the application of this strategy may influence the design model, implementation model, and deployment 
model. The design model is typically structured using one of two approaches. 

The first approach shows the elements being “contained” within the layer. The result is implied in Figure 5, a Rational Rose 
browser screenshot, which shows: 

• = presentation classes (CustomerView, OrderView, and ProductView) residing within a Presentation Logic 
package 

• = business logic classes (Customer, Order, and Product) residing within a Business Logic package  

• = data access logic classes (CustomerData, OrderData, and ProductData) residing within a Data Access 
Logic package 

 



Layering Strategies 

6 

 

Figure 5:  Elements Contained Within Layers 

The second approach incorporates the concept of a business component (in this case, Customer, Order, and Product) as a first-
class citizen, whereby the primary elements of concern are the domain-related concepts supported by the system. For 
example, the concept Customer may have associated elements of presentation logic, business logic, and data access logic. 
This concept of a business component is discussed further in [Eeles] and [Herzum]. This way of thinking results in the model 
structure shown in Figure 6. In this example the layering is implied by the element names. For example, all View classes (such 
as CustomerView) imply a presentation logic layer and all Data classes (such as CustomerData) imply a data access logic 
layer. Unqualified class names (such as Customer) imply a business logic layer. 

 

Figure 6:  Implicit Layering Within Each Business Component Package 

 



Layering Strategies 

7 

The layering could also be represented explicitly within each package representing a business component as shown in Figure 
7. This structuring is preferable when there are a number of elements involved in each layer of a given business component. 
Although only the Customer business component package has been expanded in this example, the Order and Product 
packages would have a similar structure. 

 

Figure 7:  Explicit Layering Within a Business Component Package 

 

A responsibility-based layering strategy typically influences the implementation model in addition to the design model, when 
there is a need to physically partition the elements that implement each responsibility. For example, consider a system that 
exhibits a “thin client” physical distribution: it is useful to identify the implementation units required to support execution on 
a client and those required to support execution on the server. In this example, the elements in the presentation logic layer 
reside in an application that is deployed on a client, and all of the elements in the business logic layer and data logic layer 
reside in another application that is deployed on a server. 

This scenario implies an implementation model as shown in Figure 8, which presents a Rational Rose browser image and a 
component diagram displaying the elements of the application that is deployed on the client. In this example, there happens to 
be a one-to-one mapping between a class in the design model and a UML component in the implementation model. Note, 
however, that this mapping typically depends on the implementation technology used. 

 



Layering Strategies 

8 

 

Figure 8:  Implicit Layering Within Implementation Model 

 

Similarly, a responsibility-based layering strategy can also influence the deployment model when there is a need to describe 
the physical distribution of the responsibilities. In Figure 9, and using the example above, we can see that six nodes have been 
defined. Each of the three Client nodes houses a ClientApplication process. The FrontEndServer node houses a LoadBalancer 
process that is responsible for distributing client requests to one of two Server nodes. Each Server node houses a 
ServerApplication process. 

 

 

Figure 9:  Deployment Model Describing Physical Distribution of Responsibilities 

Reuse-based Modeling 
Another commonly used layering is one based upon reuse. This strategy is particularly relevant to organizations that have an 
identifiable goal to reuse components throughout the organization. The impact of using this layering strategy is that the 
reusability of components is highly visible, since components are explicitly grouped according to their level of reuse. An 
example layering, derived from a strategy described in [Jacobson], is shown in Figure 10. Here we see three layers: Base, 
Business-Specific, and Application-Specific.   



Layering Strategies 

9 

• = The Base layer contains elements that might apply across organizations (such as Math). Such elements will 
be reused widely. 

• = The Business-Specific layer contains those elements that apply to a particular organization, but are 
application-independent (such as Address Book). Such elements will be reused within applications in the 
same organization. 

• = The Application-Specific layer contains elements that apply to a particular application or project (such as 
Personal Organizer). These elements are the least reusable. 

 

Figure 10:  Example of Reuse-based Layering 

We can derive that the elements in the Base layer are the most reusable, whereas those in the Application-Specific layer are 
more project specific and, therefore, less reusable. 

Modeling reuse-based layers 

The application of a reuse strategy primarily influences the design model. The structure of a design model that incorporates 
reuse-based layering is straightforward to envisage and is shown in Figure 11, which reflects the example in Figure 10. 



Layering Strategies 

10 

 

Figure 11:  Design Model Incorporating Reuse-based Layering 

Other Layering Strategies 
This paper is intended to simply give a “flavor” of the different layering strategies that exist, using the two most widely used 
strategies as examples. However, similar approaches could be taken for strategies that acknowledge characteristics such as 
security, ownership, and skill set. 

Multi-dimensional Layering 
The strategies previously described can also be combined to create new layering strategies. The example in Figure 12 shows: 

• = two of the reuse-based layers from the previous example 

• = application-specific  

• = business-specific 

• = three responsibility-based layers (tiers) 

• = presentation logic 

• = business logic 

• = data access logic 

 

The dependencies present in the reuse-based layering strategy typically result from dependencies between elements in 
business logic layers, as implied in Figure 12, where we see the dependency between PersonalOrganizer and AddressBook. 



Layering Strategies 

11 

Presentation logic

Business logic

Data access logic

Presentation logic

Business logic

Data access logic

<<layer>> Application-Specific

<<layer>> Business-Specific

PersonalOrganizer

AddressBook

PersonalOrganizerView

PersonalOrganizerData

AddressBookView

AddressBookData
 

Figure 12:  Multidimensional Layering 

 

Modeling multidimensional layers 

Here we consider the representation of the multidimensional aspects of layering within a two-dimensional design model. We 
also consider a structure whereby the business component concept is incorporated. 

Reuse-Based
Layers

Responsibility-Based
Layers

Address Book
“Business Component”

 

Figure 13:  Design Model Incorporating Multidimensional Layering 

 
Adopting a multidimensional layering strategy requires that a primary strategy be identified. In our example, the primary 
layering strategy is based upon reuse. The design model is first organized based on this strategy giving the layers Application-
Specific, Business-Specific, and Base. Each of these layers is then further organized by the elements that reside on each of 
these layers; for example, Figure 13 shows the Business-Specific layer containing Address Book and Calculator. Each of 
these elements is then further organized based upon a secondary strategy: responsibility-based layering. For example, the 
Address Book package contains the three layers Presentation Logic, Business Logic, and Data Access Logic.  

Each of these layers then contains any elements that reside on this layer:  

• = the presentation logic layer contains the AddressBookView class  

• = the business logic layer contains the AddressBook class 



Layering Strategies 

12 

• = the data access logic layer contains the AddressBookData class 

Conclusion 
One of the most important decisions an architect must make is choosing an appropriate layering strategy, since it will have a 
major influence on the structure of the models produced. Of more significance, however, is the fact that business benefits, 
such as maintainability and reuse, can be directly supported by the layering strategy chosen. For example, more maintainable 
systems are likely to be developed should the different responsibilities of the system be isolated from one another through the 
adoption of a responsibility-based layering strategy. Also, reusable system elements can be clearly identified using a reuse-
based layering strategy. 

Acknowledgements 
The author would like to acknowledge the contributions of Kelli Houston, Wojtek Kozaczynski, Philippe Kruchten, Bran 
Selic, and Catherine Southwood (all of Rational Software) for their insightful comments on early drafts of this paper. 

Bibliography 

[Buschmann]   Buschmann, Frank, et al. A System of Patterns. 1996. New York: John Wiley & Sons.  
ISBN 0-471-95869-7. 

[Edwards]   Edwards, Jeri. 3-Tier Client/Server at Work. 1999. New York: John Wiley & Sons.  
ISBN 0-471-31502-8. 

[Eeles]   Eeles, Peter, and Oliver Sims. Building Business Objects. 1998. New York: John Wiley & Sons. ISBN 
0-471-19176-0. 

[Herzum]  Herzum, Peter, and Oliver Sims. The Business Component Factory. 2000. New York:  
John Wiley & Sons. 

[Jacobson]  Jacobson, Ivar, et al. Software Reuse. 1997. Reading, Massachusetts: Addison-Wesley.  
ISBN 0-201-92476-5. 

[PLoP2]   Vlissides, John, James Coplien, and Norman Kerth. Pattern Languages of Program Design 2. 1996. 
Reading, Massachusetts: Addison-Wesley. ISBN 0-201-89527-7.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Dual Headquarters: 

Rational Software 
18880 Homestead Road 
Cupertino, CA  95014 
Tel: (408) 863-9900 
 
Rational Software 
20 Maguire Road 
Lexington, MA  02421 
Tel: (781) 676-2400 
 
Toll-free: (800) 728-1212 
E-mail: info@rational.com 
Web: www.rational.com 
International Locations: www.rational.com/worldwide 
 

Rational, the Rational logo, and Rational Unified Process are registered trademarks of Rational Software Corporation in the 
United States and/or other countries.  Microsoft, Microsoft Windows, Microsoft Visual Studio, Microsoft Word, Microsoft 
Project, Visual C++, and Visual Basic are trademarks or registered trademarks of Microsoft Corporation.  All other names 
used for identification purposes only and are trademarks or registered trademarks of their respective companies.  ALL 
RIGHTS RESERVED.  Made in the U.S.A. 

 Copyright 2002 Rational Software Corporation. 
Subject to change without notice. 

 


